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Abstract— This work demonstrates dual-arm lifting of bulky
objects based on inferred object properties (center of mass
(COM) location, weight, and shape) using proprioception (i.e.
force torque measurements). Data-driven Bayesian models de-
scribe these quantities, which enables subsequent behaviors to
depend on confidence of the learned models. Experiments were
conducted using the NASA Jet Propulsion Laboratory’s (JPL)
RoboSimian to lift a variety of cumbersome objects ranging in
mass from 7kg to 25kg. The position of a supporting second
manipulator was determined using a particle set and heuristics
that were derived from inferred object properties. The sup-
porting manipulator decreased the initial manipulator’s load
and distributed the wrench load more equitably across each
manipulator, for each bulky object. Knowledge of the objects
came from pure proprioception (i.e. without reliance on vision
or other exteroceptive sensors) throughout the experiments.

I. INTRODUCTION

Manipulating an object with two hands is a fundamental
capability for many tasks in mobile manipulation, including
the proper use of many tools and the lifting of bulky objects.
Selecting the grasp locations on the object’s surface is thus
a prerequisite for task completion. In this paper, our task is
to lift and support bulky objects whose mass and size (e.g.
∼ 50lbs and ∼ 1m maximum weight and extent) could either
overload the capacity of a single manipulator or significantly
degrade mobility performance after the payload is lifted
with a single manipulator. Dual arm grasping can benefit
both these scenarios by spreading load more evenly across
the robot-payload system. The challenge is to identify two
grasp locations on the object that minimize the wrench loads
experienced at each manipulator. Knowledge of the object’s
shape, center of mass (COM) location, and weight are not
known a priori. However, these properties strongly affect
manipulability and confidence in their values is necessary
for robust manipulation in the field. To solve this task, we
present an algorithm that represents the object’s properties
using Bayesian methods. The object’s properties are queried
proprioceptively and we show experimentally that dual arm
manipulation is enabled for a wide range of objects using
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Fig. 1: RoboSimian Probing the Properties of a Bulky Chair

these measurements alone3. Candidate grasp locations are
represented using a particle set. A heuristic that depends on
confidence in the object’s properties is associated with each
particle. When the heuristic of the most likely particle passes
a user-defined threshold, a grasp is attempted. If no particle
passes this threshold, then the algorithm chooses a property
of the object to explore proprioceptively and the process is
repeated.

The platform used in this paper is the Jet Propulsion
Laboratory’s (JPL) RoboSimian (see Fig.1). RoboSimian
is an agile quadruped designed to operate in hazardous
environments. Each RoboSimian limb is composed of three
elbows and seven total degrees of freedom (DOF). On each
limb’s distal end is a Cam-Hand that contains four fingers
and three additional DOF. A set of differential drive wheels
are mounted to RoboSimian’s back and two passive wheels
to its rear limbs to enable fast rolling across level ground
when appropriate. RoboSimian’s flexible design enables it
to alternate between extreme terrain mobility (using its four
limbs) and object manipulation (using any two of its limbs).
These capabilities were showcased in the DARPA Robotics
Challenge (DRC) [1], [2]. In our experiments, objects are
grasped with the front limb’s Cam-Hands while RoboSimian
is in a sitting pose, which is shown in Fig. 1.

II. BACKGROUND, RELATED WORK & CONTRIBUTIONS

This work is motivated by scenarios in which noisy or
forceful interactions are necessary to manipulate unknown
objects in cluttered environments. Interactions tend to be

3This algorithm is sensor agnostic, e.g., range data from depth cameras
or stereo vision can be readily incorporated



challenging due to unknown inertial properties of the target
object, collisions with surrounding clutter and also occlu-
sions that reduce effectiveness of exteroception driven behav-
iors. For these reasons, we focus on leveraging probabilistic
inference methods with pure proprioception driven adapta-
tion to tackle and reason about noisy interactions. The tar-
get’s properties are inferred using Bayesian methods, which
are probabilistic estimates that update a prior assumption on
the property’s value based on Bayes’ theorem (see [3] for a
review).

Many works have focused on modeling an unknown
object’s surface using a specific type of Bayesian method
known as a Gaussian Process (GP) to enable object iden-
tification or grasp planning. A GP can be thought of as a
defining a Gaussian distribution over functions,

f(x) ∼ GP(m(x), k(x, x′))

where x ∈ Rd is a feature, m(x) = E[f(x)] is the mean
function and,

k(x, x′) = E[f(x−m(x))(f(x′)−m(x′))]

is the covariance function [4]. The value of the function,
f(x) ∈ R is distributed as a Gaussian and is completely
determined by {m(x), k(x, x′)}, which are selected by the
user. The covariance function reflects the correlation between
nearby data points (x, x′), i.e. the smoothness of the data.

GPs are data-driven processes. Given a set of training data
D = {(xi, yi)}ni=1, one may obtain the posterior distribution
over the function’s value at a new data point x∗. The posterior
distribution is given by f(x∗) ∼ N (f̄∗,Σ∗) where,

f̄∗ = kT∗ (K + σ2
nI)−1y (1)

Σ∗ = k(x∗, x∗)− kT∗ (K + σ2
nI)−1k∗ (2)

where k∗ = {k(xi, x∗)}ni=1, K is an n×n matrix whose ith

column is xi, y = {yi}ni=1, and σ2
n is the signal variance [4].

Specifically GPs have been effective in representing im-
plicit surfaces as a means to capture shape information
of unknown objects. In [5], a probabilistic signed distance
function (SDF) was used to represent an unknown object’s
surface and uncertainty from this model was used to choose
precision grasping locations. In [6], an GP implicit-surface
(GPIS) represented the object’s surface. The posterior’s mean
function was then used to create a potential field that guided
subsequent reaching motions. Mahler et. al [7] similarly used
GPIS to represent a novel object’s surface, which was then
used to orient a parallel-jaw gripper such that the resulting
grip would possess a high probability of force closure.
Choosing to represent an object’s surface probabilistically
allows subsequent tasks to be conditioned on the uncertainty
in the surface model, which may trigger exploitation of
current model or further exploration (e.g. using haptics to
probe uncertain areas of an object as in [8]). Although vision
is the predominant sense used to learn about an object’s
properties, several researchers have used proprioception to
learn about novel objects without the use of computer vision.

In [9], a manipulator interacted with an unknown object
according to a set of primitives (e.g. push, shake, lift) while
recording joint torques and auditory sounds. The collected
data produced features that were used to classify the object.
Similarly, classification in [10] followed from manipulating
an object according to an “excitation trajectory,” which
allowed the object’s mass, COM location, and inertia tensor
to be used as features. Furthermore, classification features in
[11] were based on finger joint angles that were recorded
while grasping an object. These joint angles conveyed a
“signature” of the object’s shape. Although most of this re-
search has focused on object identification, one can imagine
learning these object properties to enable other behaviors like
lifting a bulky object.

Thus, the key contributions of this work include (i) a
probabilistic representation of an object’s shape, COM lo-
cation, and weight based on pure proprioception and (ii) the
use of this representation to identify grasping locations to
permit the dual arm support of bulky objects. Compared
to previous work in this area, there are two key reasons
for the significance and novelty of this work for Robotics
community. First, objects properties are inferred not for the
purpose of recognition but to generate reactive behaviors
on the fly. The goal here is develop the simplest behavior
that can work with extremely sparse information. Second,
experimental tests demonstrate a adaptive behavior on heavy
and bulky objects (10kg to 25kg). To the knowledge of the
authors, experimental demonstrations beyond 10kg payloads
have not been shown before with human-scale mobile ma-
nipulation robots.

The remainder of the paper is organized as follows. In
Section III, the probabilistic model describing an object’s
COM location and mass are described. Section IV introduces
the probabilistic model of an object’s shape. Section V
presents our method of selecting a grasping location using
particles, followed by future work detailed in Section VI.
Experimental results can be found throughout the remaining
sections.

III. OBJECT CENTER OF MASS (COM) LOCATION &
WEIGHT

The object’s COM location and weight are inferred using
a six DOF force-torque (FT) sensor mounted between the
distal end of RoboSimian’s limb and the Cam-Hand.

A. Estimating COM Position

Lifting an object with one hand and recording the FT is
sufficient to determine two DOF of the COM’s position. The
DOF pertaining to the COM’s position along the direction
of gravity is unobservable using a single measurement.
Thus, the object must be rotated to ascertain the full three
DOF defining the COM position. For simplicity, we initially
assume that one manipulator can lift and rotate the object.
All estimates of the object’s COM are calculated with respect
to a frame EE, fixed to this first manipulator.



(a) Prior (No measurements) (b) Likelihood (1 measurement) (c) Posterior (1 measurement)

(d) Prior (1 measurement) (e) Likelihood (2 measurements) (f) Posterior (2 measurements)

Fig. 3: Illustrative example of COM Inference (dotted lines show the local direction of gravity in the EE frame)

(a) Pallet (14.2 kg) (b) User Display with COM (dark red ellip-
soid) overlay’ed with a stereo point cloud

(c) COM Magnitude, ||rs||

Fig. 4: Probing the COM location of a pallet

Fig. 2: Graphical representation of the COM’s probabilistic
model.

Estimation of the object’s COM location follows the block
diagram shown in Fig. 2. The COM position expressed in
EE is given by,

rCOM = rs + ε111

where rs ∈ R3 is the static COM position, ε ∈ R is random
noise and 111 = {1}3i=1. Typically, the measurement model for
rs would include two successive rotations of the manipulator
to fully constrain the COM’s position. However, a single
FT measurement without subsequent rotation can be used if
the measurement model is heteroscedastic. A heteroscedastic
model is one in which the noise is a smooth function of
the inputs [12]. Let rs be governed by a multidimensional
Gaussian, rs ∼ N(µµµ,Σ(wee)) with an unknown mean µµµ and
an input-dependent variance Σ(wee), where wee = {fee, τee}
is a single wrench measurement expressed in frame EE. The
variance of Σ(wee) is a constant small-value in the directions
orthogonal to gravity since a single wrench measurement
constrains these DOF. Along the gravity direction, the vari-



ance is a constant large value such that the Σ(wee) resembles
an elongated ellipse. Measurements of the COM follow from
the wrench,

µµµm =
fee × τ
||fee||2

This measurement is physically equivalent to a projection
of the true COM location onto a plane orthogonal to the
local direction of gravity in EE. Although this measurement
captures two DOF of the COM, the full three DOF can be
achieved with rotation of the object and the heteroscedastic
model. The noise is distributed as ε ∼ N (0, λ−1), where λ
is a constant precision1. Then,

rCOM ∼ N(µµµ,Σ(wee) + λ−1I)

A distribution governing µµµ can be obtained by setting a
multidimensional Gaussian prior N(µµµ0,Λ0). Together with
the likelihood N(µµµ,Σ(wee)), the posterior governing µµµ can
be obtained in closed-form [3] as µµµ ∼ N(µµµn,Λn) where,

µµµn = (Λ−1
0 + nΣ−1)−1(Λ−1

0 µµµ0 + nΣ−1µ̄µµ)

Λ−1
n = Λ−1

0 + nΣ−1

where µ̄µµ is the average of the measurements µµµm. This
posterior is then used to reason about rCOM , as shown in
Fig. 3. In Fig. 3b, the elongated form of Σ(wee) is evident
after a single measurement from the FT. Note that the true
COM may lie anywhere on this line. In Fig 3e, the wrist has
been rotated and an additional measurement has been taken
leading to another elongated likelihood for the COM but in
another direction due to the hand’s motion. The posterior
in Fig. 3f after two measurements is localized on the true
location of the COM and its sensitivity is a function of the
angle through which the object is rotated. It is interesting to
observe that the heteroscedastic model adopted here enables
us to deduce the three DOFs of the true COM location
despite the two DOF measurements, µµµm, that are possible
with the FT sensor.

Figure 4 demonstrates the COM probe algorithm for a
pallet. Figure 4a shows a view from RoboSimian’s camera
as the CamHand grasps the pallet. Figure 4b shows the user’s
interface after the COM probe, where certainty in COM
position is denoted by a one standard-deviation ellipsoid
shaded in maroon. Figure 4c demonstrates the convergence
of ||rrrs|| as the object is rotated 30◦ from the orientation
shown in Fig. 4a. It is evident that ||rrrs|| stabilizes after
three FT measurements taken at different object orientations,
as can be seen from the blue line in Fig. 4c. The red
line of Fig. 4c shows the COM position responding to an
external, unexpected wrench (the object was kicked during
FT acquisition). As can be expected, the variance on ||rrrs||
rose due to the disturbance and settled to a stable value after
more undisturbed data was collected.

1A stochastic precision model has been developed to enable the variance
to inflate when disturbance forces or collisions perturb the object during the
COM probe.

B. Estimating Weight

The weight of the object, ω, is similarly modeled as a
stochastic variable. Weight measurements are provided by
the norm of the measured FT force, ||fee||. The likelihood
is modeled by a simple Gaussian with unknown mean and
precision, N (µ, λ−1). The conjugate prior to this likelihood
is the normal-Gamma distribution, NG(µ0, κ0, α0, β0) (see
[13] for details). The posterior is then a normal-Gamma
distribution, where NG(µ, λ|µ0, κ0, α0, β0) and,

µn =
κ0µ0 + nω̄

κ0 + n

κn = κ0 + n

αn = α0 +
n

2

βn = β0 +
1

2

n∑
i=1

(mi − ω̄)2 +
κ0n(ω̄ − µ0)2

2(κ0 + n)

where ω̄ is the mean of all n weight measurements. The
normal-Gamma posterior then fully characterizes the distri-
bution of ω and in practice µn is adopted as the object’s
weight.

IV. OBJECT SHAPE

The object’s shape is represented using GP implicit sur-
faces (GPIS). An implicit surface is defined by a smooth
function φ(x) = 0, where x ∈ R3 represents a position in
ambient space. We assume that the target is a single, closed
object. Let O denote the points defining the object’s surface.
Similar to [6], we have adopted the convention,

φ(x) is


> 0, x outside O
< 0, x inside O
= 0, x ∈ O

The GP is used to predict the function φ : R3 → R. For
each ambient position x, the GP will return a posterior mean
µ(x) (from Eq. 1) and covariance σ(x) (from Eq. 2) on the
function φ(x). Normals to the surface can also be calculated
by taking the gradient of Eq. 1 with respect to x.

We chose a thin-plate (TP) covariance function [6] for
our GP model. This covariance function is a popular choice
to model implicit surfaces as it was shown to have the
desired behavior at boundaries [6]. In addition, this function
is desirable as it only has one hyper-parameter and given
that we want to operate with unknown objects it is hard to
get access to a good training set. This function is defined as
follows:

kTP (x, x′) =
1

12
(2d3 − 3Rd2 +R3) (3)

where d , ||x − x′|| and R is a constant that physically
corresponds to the maximum anticipated value between any
two points in the feature space. We trained the hyper-
parameter R of the thin-plate covariance function by fitting
to a representative shape like a cube as shown in Fig. 5.



A set of exterior boundary points, S, are added as training
data to condition the GP. These points are equally distributed
about a sphere of constant radius and φ(S) = +σ, where σ
is a large positive value. When a manipulator probes the
object, the contact point xcon in frame EE is added to
the GP’s training data with a value of zero. In addition,
the contact normal, ncon, is estimated using the measured
force from the FT. Using this normal, we add two additional
points φ(xcon ± εn) = ±ε to the training data, where ε is a
small constant parameter. This proved to be a simple way to
implement surface normal measurements into the GP. When
a manipulator moves towards the object and fails to make
contact, negative information (i.e. the lack of contact) is also
used to update the shape GP. The result of the shape GP on
a grasped stool after some probing is shown in Fig. 6.

Fig. 5: Thin-plate covariance function’s parameter R was
chosen by training on a known object like a cube. The
colored mesh denotes the zero level-set of the implicit surface
and the warm colors denote uncertainty in the shape.

Fig. 6: Result of shape GP on a grasped stool after ∼14
points have been probed around the stool’s exterior. A stereo
point cloud of the true object is shown along with the zero
level-set of the implicit surface.

V. CHOOSING GRASP LOCATION & EXPERIMENTS

We assume that one manipulator initially grasps and lifts
the object. Once the object’s shape, COM, and weight have
been determined, the task is to select the position of a
supporting manipulator that we assume contacts the object at
a point without friction. To facilitate this, a set of particles is

distributed uniformly throughout the workspace. Each parti-
cle represents the location of the supporting manipulator, x.
The force imparted by the supporting manipulator is assumed
to be equal to half the weight of the object. Heuristics are
associated with each particle in the set, corresponding to
the likelihood of lifting the bulky object. The heuristics for
success come from (i) confidence that the contact location is
on the object’s surface, (ii) equality of the wrench norms
between the two manipulators and (iii) confidence in the
object’s measured weight and COM location.

A. Shape Heuristic

The supporting manipulator’s contact point must be con-
fidently located on the object’s surface, x ∈ O. The shape
GP provides the posterior mean value of the implicit function
µ(x) and the covariance σ(x). A heuristic rewarding particles
that are confidently located on the object’s surface can be
written as,

hshape =
1

2
e−C1µ(x)2 +

1

2
e−C2σ(x)2

where hshape ∈ [0, 1] and (C1, C2) are positive. This
heuristic rewards particles that are located on the surface
µ(x) = 0 with low covariances σ(x).

B. Wrench Equality Heuristic

The objective is to pick the supporting manipulator’s
contact position to minimize the wrench norm experienced
at each manipulator. Further, it is desirable that the wrench
norms at each manipulator be equal. Let the hand frame of
the initially-contacting manipulator be denoted EE1 while
the second hand frame is denoted EE2. Assuming that the
second manipulator contacts the surface at a point with no
friction, static equilibrium of the object is written as,

w1
r = −w1

g − w1
2(d2)

where w1
g is the wrench due to gravity, w1

2 is the wrench
due to the second manipulator, and w1

r is the remainder
wrench required for static equilibrium, all expressed in frame
EE1. The wrench acting on EE1 is w1

r . Again using static-
equilibrium, we can express the wrench felt at EE2 by,

w2
r = AdTg12w

1
r

where g12 ∈ SE(3) is the rigid transformation between the
frames EE1 and EE2. For a given wrench w = (f, τ) ∈ R6,
we assume a wrench norm of ||w|| = ||f ||+ ||τ ||. Then, we
can form a heuristic over the particle set that enforces wrench
equality and minimization as,

hwe =
1

2
e

(
−C1

(
1− ||w1

r||
||w2

r||

)2)
+

1

2
e

(
−C2

(
1− ||w2

r||
||w2

r,min
||

)2)
where w2

r,min is the smallest wrench norm of any particle in
the set, and (C1, C2) are positive. This heuristic lies in the
range [0, 1] with an optimal particle having unity weight.



(a) Grasp 1 - Chair (b) Grasp 2 - Chair (c) Grasp 3 - Chair (d) Grasp 4 - Chair

(e) Grasp 1 - Hand-truck (f) Grasp 2 - Hand-truck (g) Grasp 3 - Hand-truck (h) Grasp 4 - Hand-truck

(i) Grasp 1 - Pallet (j) Grasp 2 - Pallet (k) Grasp 3 - Pallet (l) Grasp 4 - Pallet

(m) Grasp 1 - Stanchion (n) Grasp 2 - Stanchion (o) Grasp 3 - Stanchion (p) Grasp 4 - Stanchion

(q) Grasp 1 - Truss (r) Grasp 2 - Truss

Fig. 7: Ending postures of an auto-adaptive dual arm behavior given different operator-specified initial grasp locations. The
results are shown for a chair (25 kg), hand-truck(14.6 kg), pallet(14.2 kg), stanchion (7.6 kg) and truss (17.2 kg).

C. COM & Weight Heuristic

Lifting a bulky object requires confidence in the object’s
COM location and weight. Uncertainty in the COM location
or weight would jeopardize a lift no matter where the
supporting hand is placed. Therefore, a heuristic based on
the certainty of the weight and COM should penalize the
particles uniformly. From Sec. III, the posterior covariance
on the COM’s position is given by Λ and the variance on
the weight follows from λ. The following heuristic penalizes
each of the particles uniformly,

hm =
1

2
e−C1Tr(Λ) +

1

2
e−C2σ

where again (C1, C2) are positive and hm ∈ [0, 1] with
favorable particles near unity.

D. Updating Particle Set

The sum of the heuristics on each particle are used as
weights during a re-sampling step. A Low-Variance Sampler
(LVS) re-samples the particle set, with replacement, accord-
ing to the weights associated to each particle [14]. This
has the effect of populating the set with particles of high
heuristic value, i.e. high likelihood of a stable lift, while
still maintaining particle diversity. Since re-sampling occurs
with replacement, a single particle may be included in the
set multiple times. The relative number of times a particle
is included in the set may be interpreted as a likelihood of
a stable grasp.



E. Experiments

Our experiments follow the state machine shown in Fig.
8. If the maximum particle weight is below a user-defined
threshold hth, then a grasp is not attempted due to a lack
of confidence in the object’s properties. Determining the
object property with the greatest uncertainty follows by
evaluating the relative fraction (α = 1 − hsp

hm
) over the

particle set. For particles in the set where α < 0, this implies
hm < hsp, signifying that knowledge of the COM position or
weight must improve. This triggers an additional COM probe
whereby the object is rotated as in Section III-A. Likewise,
for particles where α > 0, this implies hsp < hm, which
signifies that greater knowledge of object shape is desired.
This triggers the second manipulator to probe the object near
the most uncertain portions of the GPIS.

Fig. 8: A state machine illustrating a basic auto-adaptive
behavior for second end effector placement given first end
effector placement via operator input.

Experiments were conducted on a variety of bulky objects
with masses ranging from 7 to 25 kilograms, as shown in
Fig. 7. In this figure, RoboSimian’s right hand first lifts the
object and estimates its COM and weight via a slight rotation
of the wrist. At this point, knowledge of the object’s shape is
limited to the single point of contact made by the right hand.
Using knowledge of the object’s COM, the left manipulator
moves to contact such that the COM is situated symmetri-
cally between both manipulators. Force-torque measurements
were made at the distal end of RoboSimian’s right and left
hand before and after the second manipulator moved to
support the object. The wrench magnitudes were calculated
for each object and trial, as shown in Fig. 9. Wrench norms
have been rescaled such that the initial wrench norm on the
right hand is unity. For the desired performance, one would
require the wrench norms for both manipulators to settle at
0.5 indicating symmetric load balancing.

These plots show load transfer performance after one
successful contact with the second end effector. The demon-
strated trends show promise in terms of monitoring load
transfer and adapting. Table I quantifies the wrench norm
trends in terms of percent load reduction on end effectors.
It also describes and documents observed failures. The

Object No. of % reduction in % increase in No. of Comments
runs EE1 wrench norm EE2 wrench norm failures

Chair 4 9.1(max), -0.1(min) 38.4(max), -0.7(min) 0/4
Insufficient grip on EE1,
observed object slip in
hand.

Handtruck 5 64.3(max), 24.8(min) 81.9(max), 46.9(min) 1/5 Insufficient grip on EE1.
Pallet 4 15.0(max), -8.9(min) 51.9(max), 37.5(min) 0/4

Stanchion 7 13.4(max), -2.3(min) 49.0(max), 20.0(min) 3/7 Workspace constraints

Truss 5 22.4(max), 21.1(min) 19.4(max), 15.0(min) 3/5

Three failures; object-
robot collision, workspace
constraint, and insufficient
grip.

TABLE I: Results: Failures and % change in load

hand-truck and the truss demonstrated the best symmetric
load transfer after one adaptive contact behavior. The chair
was the heaviest object showed minimal reduction in load
of the first despite significant increase in the second end
effector load (indicating build up of internals squeeze forces).
Similarly, the stanchion and the pallet also showed cases
where the first end effector load reduction was minimal.
These observations indicate the need for further iterative
information gathering and adaptation. In these preliminary
experiments, our goal was to determine the simplest behavior
that would work across different objects and different initial
grasps without failures. In future work, we will expand the
behavior to iterate until a better load transfer is achieved
across end effectors. We also believe relieving internal grip
forces in conjunction with adjusting end effector placement
is an important future area of improvement.

Three main challenges were encountered during these
tests. First, the size of the objects relative to the workspace
led to collisions between RoboSimian and the target object;
this was particularly noteworthy when manipulating the truss,
which prohibited the truss from being handled at its ends
and terminated two of the trials. Secondly, the grasps of
RoboSimian’s Cam-Hands had difficulty restraining the in-
hand rotation of objects with low compliance. Objects that
slipped in the hands included the chair, hand-truck, and
truss with noticeable results on the wrench norms of Fig.
9. Third, the supporting hand occasionally moved to contact
the object in a way that increased the reactive wrench on the
grasping manipulator. This occurred most noticeably on the
stanchion, and was due to the limited shape information that
was incorporated into these tests.

VI. CONCLUSION

Our experiments have demonstrated that lifting bulky ob-
jects with two manipulators can be facilitated by taking pro-
prioceptive measurements of the object’s COM, weight, and
shape. Experiments using RoboSimian to lift bulky objects
up to 25kg showed that basic knowledge of the object’s COM
and shape could be used to position a second manipulator
to balance the wrenches experienced at either hand. This
basic capability is a prerequisite task to more complicated
behaviors such as component assembly or the rearrangement
of bulky objects in a room. Furthermore, object properties
are inferred probabilistically using data-driven methods such
that subsequent actions can be conditioned on confidence in
our knowledge of the object.



(a) Chair (b) Hand-truck (c) Pallet

(d) Stanchion (e) Truss

Fig. 9: Wrench norms experienced by right (blue) and left (red) manipulators. Wrench norms have been rescaled such that
the inital wrench norm on the right hand is unity. For ideal performance, once would expect the wrench norms for both
manipulators to settle at 0.5 indicating equal load balancing.

Future research could be productively focused on three key
areas. First, studying the relationship between the evolving
shape of the object and the robot’s workspace could elimi-
nate object-robot collisions. A path-planning algorithm that
considers the object’s shape will likely be required to place
the second manipulator in a favorable position to explore
difficult-to-reach areas of the object, like the backside of the
pallet in Fig. 7. Second, implementing a dynamic particle
set could improve the efficiency of searching for the best
end-effector support point. Currently, our method resamples
a fixed particle set where each particle represents an end-
effector position. Using a dynamic set, perhaps based on
Particle Swarm Optimization (PSO) strategies [15], would
enable a smaller number of particles to explore a larger-
dimensional space. This would increase the efficiency of the
search as well as allow inclusion of forces into the parti-
cle definition. Third, future work could incorporate vision-
derived information into the object’s surface model. This
would dramatically reduce the number of probing touches
required provided that the vision system could operate ro-
bustly in the field.
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